Neurochemical development of the brainstem catecholaminergic cell groups in rat.

2003 
The postnatal development of tyrosine hydroxylase activity has been studied in the brainstem catecholaminergic cell groups (A1C1, A2C2, A5, A6, A7), involved in cardiorespiratory control. In rat, at birth and at postnatal days P3, P7, P14, P21 ant P68, we used a microdissection technique followed by in vivo measurement of the tyrosine hydroxylase (TH) activity, the rate-limiting enzyme in catecholamine synthesis. There is two successive marked increases in TH activity: at P3 in every catecholaminergic cell groups (A1C1, +225%; A2C2, +300%; A5, +190%; A6, +205% compared to birth) and during the third postnatal week with a peak of TH activity at P14 (A6, +90% above the P7 level) or at P21 (A1C1, +715%; caudal A2C2, +585%; rostral A2C2, +15%; A5, +445%; A7, +180% compared to P7). The data suggest the existence of two temporal windows during the neurochemical development of the catecholaminergic cell groups, which correspond to two metabolic transitions. The first one could be related to the intra-, extrauterine transition and the second one, to a deep energetic phase of maturation in the rat brain, closely related to the maturation of cardiorespiratory processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    24
    Citations
    NaN
    KQI
    []