Nanoparticle processing: Understanding and controlling aggregation

2020 
Nanoparticles (NPs) are commonly defined as particles with size <100nm and are currently of considerable technological and academic interest, since they are often the starting materials for nanotechnology. Novel properties develop as a bulk material is reduced to nanodimensions and is reflected in new chemistry, physics and biology. With reduction in size, a greater function of the atoms is at the surface, and promote different interaction with its environment, as compared to the bulk material. In addition, the reduction in size alters the electronic structure of the material, resulting in novel quantum effects. Size also influences mobility, primarily controlled by Brownian motion for NPs, and relevant in biological and environmental processes. However, the small size also leads to high surface energy, and NPs tend to aggregate, thereby lowering the surface energy. In all applications, the uncontrolled aggregation of NPs can have negative effects and needs to be avoided. There are however examples of controlled aggregation of NPs which give rise to novel effects. This review article is focused on the NP features that influences aggregation. Common strategies for synthesis of NPs from the gas and liquid phases are discussed with emphasis on aggregation during and after synthesis. The theory involving Van der Waals attractive force and electrical repulsive force as the controlling features of the stability of NPs is discussed, followed by examples of how repulsive and attractive forces can be manipulated experimentally to control NP aggregation. In some applications, NPs prepared by liquid methods need to be isolated for further applications. The process of solvent removal introduces new forces such as capillary forces that promote aggregation, in many cases, irreversibly. Strategies for controlling aggregation upon drying are discussed. There are also many methods for redispersing aggregated NPs, which involve mechanical forces, as well as manipulating capillary forces and surface characteristics. We conclude this review with a discussion of aggregation relevant real-world applications of NPs. This review should be relevant for scientists and technologists interested in NPs, since emphasis has been on the practical aspects of NP-based technology, and especially, strategies relevant to controlling NP aggregation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    165
    References
    35
    Citations
    NaN
    KQI
    []