Zn0.6Fe0.1Cu0.3/GDC Composite Anode for Solid Oxide Fuel Cell
2011
Recent research results show that homogeneity and microstructure are very important parameters for the development of low cost materials with better performance for fuel cell applications. This research effort has been contributed in the development of low temperature solid oxide fuel cell (LTSOFC) material and technology as well as applications for polygeneration. The microstructure and electrochemical analyses were conducted. We found a series of new electrode materials which can run solid oxide fuel cell at 300–600°C range with high performances, e.g., a high power density output of 980 mW cm−2 was obtained at 570°C. The fuel cell electrodes were prepared from metal oxide materials through a solid state reaction and then mixed with doped ceria. The obtained results have many advantages for the development of LTSOFCs for polygeneration. The nanostructure of the anode has been studied by high-resolution electron microscopy, the crystal structure and lattice parameters have also been studied by X-ray diffraction. The electrical conductivity of the composite anode was studied by electrochemical impedance spectra.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
23
References
4
Citations
NaN
KQI