Molecular Quantum Electrodynamics at Finite Temperatures: Applications to Nuclear Magnetic Resonance

2020 
In this document it is shown that the chemical shift, spin-spin couplings and return to equilibrium observed in Nuclear Magnetic Resonance (NMR) are naturally contained in the realtime nuclear spin dynamics, if the dynamics is calculated directly from molecular Quantum Electrodynamics at finite temperatures. Thus, no effective NMR parameters or relaxation superoperators are used for the calculation of \textit{continuous} NMR spectra. This provides a basis for the repeal of Ramsey's theory from the 1950s, NMR relaxation theory and later developments which form the current basis for NMR theory. The presented approach replaces the discrete spectrum of the effective spin model by a continuous spectrum, whose numerical calculation is enabled by the usage of the mathematical structure of algebraic Quantum Field Theory. While the findings are demonstrated for the hydrogen atom, it is outlined that the approach can be applied to any molecular system for which the electronic structure can be calculated by using a common quantum chemical method. Thus, the presented approach has potential for an improved NMR data analysis and more accurate predictions for hyperpolarized Magnetic Resonance Imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []