Heterostructure at CMOS source/drain: Contributor or alleviator to the high access resistance problem?

2016 
This work investigates the interface resistivity of several heterostructures. Theoretical simulations suggest that, apart from the doping impact, the band offset and the difference in density of states (DOS) increase significantly the heterostructure interface resistivity. This conclusion corresponds well to our experiments that 1) high interface resistances are observed between (high-Ge content) p-SiGe/p-Si, n-InAs/n-Si, and n-InAs/n-Ge; and that 2) a TiSi x /12nm Si:P/n-Ge contact with favorable band alignment between Si:P/n-Ge approaches low effective contact resistivity of 1.4×10 −8 Ω cm 2 , close to a record-low value for n-Ge contacts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    5
    Citations
    NaN
    KQI
    []