Translational Application of Measuring Mitochondrial Functions in Blood Cells Obtained from Patients with Acute Poisoning

2018 
It is conservatively estimated that 5,000 deaths per year and 20,000 injuries in the USA are due to poisonings caused by chemical exposures (e.g., carbon monoxide, cyanide, hydrogen sulfide, phosphides) that are cellular inhibitors. These chemical agents result in mitochondrial inhibition resulting in cardiac arrest and/or shock. These cellular inhibitors have multi-organ effects, but cardiovascular collapse is the primary cause of death marked by hypotension, lactic acidosis, and cardiac arrest. The mitochondria play a central role in cellular metabolism where oxygen consumption through the electron transport system is tightly coupled to ATP production and regulated by metabolic demands. There has been increasing use of human blood cells such as peripheral blood mononuclear cells and platelets, as surrogate markers of mitochondrial function in organs due to acute care illnesses. We demonstrate the clinical applicability of measuring mitochondrial bioenergetic and dynamic function in blood cells obtained from patients with acute poisoning using carbon monoxide poisoning as an illustration of our technique. Our methods have potential application to guide therapy and gauge severity of disease in poisoning related to cellular inhibitors of public health concern.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    6
    Citations
    NaN
    KQI
    []