Covalent Conjugation of a Peptide Triazole to HIV-1 gp120 Enables Intramolecular Binding Site Occupancy

2014 
The HIV-1 gp120 glycoprotein is the main viral surface protein responsible for initiation of the entry process and, as such, can be targeted for the development of entry inhibitors. We previously identified a class of broadly active peptide triazole (PT) dual antagonists that inhibit gp120 interactions at both its target receptor and coreceptor binding sites, induce shedding of gp120 from virus particles prior to host–cell encounter, and consequently can prevent viral entry and infection. However, our understanding of the conformational alterations in gp120 by which PT elicits its dual receptor antagonism and virus inactivation functions is limited. Here, we used a recently developed computational model of the PT–gp120 complex as a blueprint to design a covalently conjugated PT–gp120 recombinant protein. Initially, a single-cysteine gp120 mutant, E275CYU-2, was expressed and characterized. This variant retains excellent binding affinity for peptide triazoles, for sCD4 and other CD4 binding site (CD4bs) li...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    7
    Citations
    NaN
    KQI
    []