Is higher-order structure conserved in eukaryotic ribosomal DNA intergenic spacers ?

1992 
Computer-based structural analysis of the ribosomal DNA intergenic spacer (IGS) from the mosquito Aedes albopictus revealed a potential to form strong and extensive secondary structures throughout a 4.7-kilobase (kb) region. The predicted stability of secondary structures was particularly high within a 3.15-kb region containing 17 tandem 201 base-pair subrepeats. Similarly strong secondary structure potential was also found when IGS subrepeats were analyzed from 17 phylogenetically diverse eukaryotes, including vertebrates, invertebrates, and plants. Conservation of higher-order structure potential in the IGS region of ribosomal DNA may reflect evolutionary and functional constraints on chromatin organization, transcriptional regulation of the ribosomal RNA genes, and/or transcript processing and stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    23
    Citations
    NaN
    KQI
    []