Energetics of Osmoregulation: II. Water Flux and Osmoregulatory Work in the Euryhaline Fish, Fundulus heteroclitus

2006 
Teleost fish experience passive osmotic water influx in fresh water (FW) and water outflux in salt water, which is normally compensated by water flow driven by active ion transport mechanisms. Euryhaline fish may also minimize osmotic energy demand by ''behavioral osmoregulation'', seeking a medium isotonic with their body fluids. Our goal was to evaluate the energy requirement for osmoregulation by the euryhaline fish Fundulus heteroclitus, to determine whether it is of sufficient magnitude to favor behavioral osmoregulation. We have developed a method of weighing small fish repetitively for long periods without apparent damage, which was used to assess changes in water content following changes in external salinity. We found that cold (41C) inhibits osmoregulatory active transport mechanisms in fish acclimated to warmer temperatures, leading to a net passive water flux which is reversed by rewarming the fish. A sudden change of salinity at room temperature triggers a transient change in water content and the initial slope can be used to measure the minimum passive flux at that temperature. With some reasonable assumptions as to the stoichiometry of the ion transport and ATP-generating processes, we can calculate the amount of respiration required for ion transport and compare it to the oxygen uptake measured previously (Kidder et al., 2005) under the same conditions. We conclude that osmoregulation in sea water requires from 6% to 10% of the total energy budget in sea water, with smaller percentages in FW, and that this fraction is probably sufficient to be a significant selective driving force favoring behavioral osmoregulation under some circumstances. J. Exp. Zool.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    64
    Citations
    NaN
    KQI
    []