Microstructure and Conductivity of the Al-Cu Joint Processed by Friction Stir Welding

2020 
In this paper, 1060 aluminum and T2 pure copper were joined by friction stir welding. The influence of the rotation speed and inclination on the microstructure and mechanical properties of the joint were investigated. The microstructure and composition of the welded interface region were analyzed. The joints’ strength was tested, and the conductivity of the joints was estimated. Joints having good surface formation and defect-free cross section were successfully obtained. The cross-sectional morphologies of the Al-Cu friction stir welding joints can be divided into three zones: the shoulder impact zone, the weld nugget zone, and the interface zone. The interface zone consisted of a metallurgical reaction layer and a visible mixed structure. The reaction layers were identified as Al2Cu, Al4Cu9 phases. The tensile strength of the joints reaches maximum values of 102 MPa at a rotation speed of 950 rpm and inclination of 0°, which was approximately equal to those of 1060Al base metal. The resistivity of the Al-Cu joint was approximately equal to the theoretical resistivity. The interfacial resistance is directly affected by the joint defects, compound types, and thickness of the intermetallic compound layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []