Solid-state NMR and ESR studies of activated carbons produced from pecan shells

2010 
Abstract A large number of solid-state NMR and ESR experiments were explored as potential tools to study chemical structure, mobility, and pore volume of activated carbon. We used a model system where pecan shells were activated with phosphoric acid, and carbonized at 450 °C for 4 h with varying amounts of air flow. Through the use of different NMR experiments (e.g., CP-MAS, SPE-MAS, and DD-MAS) several structural parameters were calculated such as mole fraction of bridgehead aromatic carbons, number of carbons per aromatic ring system, and number of phenolic carbons per aromatic ring system. The relaxation time measurements ( T 1 , T CH , and T 1 ρ H ) were indicative of the relative mobility of different structural units. ESR spectra showed the presence of π-type aromatic free radicals in the carbonized samples with a slight shift in g value with increasing oxidation. The combined NMR and ESR data give a consistent picture of the carbon structure and the carbonization process, which is not easily available otherwise. In addition, the 1 H NMR data on adsorbed water are shown to be consistent with the trends in the amount of pore volumes for different samples of activated carbons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    45
    Citations
    NaN
    KQI
    []