Failure Analysis of Physical Explosion due to Gas Jetting from High-Pressure Pipeline

2012 
Jetting of the combustible gas with high pressure is a prelude to bringing into action of the chemistry explosion of gas cloud. Comparing with the leakage and diffusion of combustible gas and the chemistry explosion effect of gas cloud, the distribution of pressure, temperature and velocity formed by high-pressure gas jetting after the destruction of a pipeline, has been paid less attention to in the related field. There are a few fundamental data on the subject of evaluation of physical explosion parameters. In this paper, a physical explosion case of hydrogen gas transported through a high-pressure pipeline is reported, and a cause analysis of the explosion accident is proposed. Numerical simulation yields the field state parameters and the damage characteristics in the process of high-pressure gas jetting. In front of the leakage gas flow, a shock wave forms due to high-pressure gas jetting. The physical explosion can trigger the combustion of leaked hydrogen gas. Though the pressure rapidly attenuates behind the shock wave, a relatively high velocity is maintained until the control valve in the pipeline system is closed down or the jetting finishes. In the given accident case, the shock wave pressure reaches an order of 1 MPa and the temperature reaches 200–300 °C. This temperatures is obviously less than the igniting temperature of hydrogen gas, 400 °C. But the combustion of leaked gas may be triggered by the spark caused by the impact of instrument plates. Since the instrument plates near the leaking port of pipeline has been damaged already before the leaked gas burns, the electric spark from the line short or the strike spark between metal parts are also completely possible to trigger this combustion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    1
    Citations
    NaN
    KQI
    []