730 mW, 2-8 μm supercontinuum generation and the precise estimation of multi-pulse spectral evolution in the soft-glass fibers cascaded nonlinear system

2021 
We experimentally demonstrate the 2-8 μm high-power supercontinuum generation and theoretically propose a statistical method for precise estimation of the multi-pulse spectral evolution in the ZBLAN and As2S3 fiber cascaded all-fiber structured nonlinear system. In the experiment, with the aid of the ultra-low loss fusion splice technology, high-efficiency fiber butt-coupling technology and precise thermal management technology, we obtained a record-breaking supercontinuum source with a spectrum spanning from 2 μm to 8 μm at a power of 730 mW. Considering the strong pulse splitting and soliton fission effects in fibers, to precisely estimate the multi-pulse spectral evolution in this system, we, for the first time, built a multi-pulse pump model with the Pearson product-moment correlation coefficient method based multi-pulse selection mechanism. In combination with the existing approaches and some new programmatic work, finally, we verified that the simulation results are in good agreement with the experimental one.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []