Selective and leaching-resistant palladium catalyst on a porous polymer support for phenol hydrogenation.

2021 
Abstract Selective hydrogenation of phenol is promising for the utilization of renewable lignocellulose and production of cyclohexanone that usually relies on petroleum, but it is challenging to simultaneously achieve high activity and selectivity. Herein, we report an amino-functionalized nanoporous polymer stabilized palladium nanoparticle catalyst, which is prepared via a one-pot co-polymerization method, as highly active and selective catalysts for the phenol hydrogenation, giving cyclohexanone selectivity over 99.5% with full conversion of phenol under mild reaction conditions without any soluble additives. Importantly, the palladium leaching was efficiently hindered, maintaining the catalytic performances in continuously recycle tests. In contrast, the commercial palladium catalysts exhibit much lower selectivity and obvious deactivation because of the palladium leaching.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []