UAV Applications for Determination of Land Deformations Caused by Underground Mining

2020 
This article presents a case study that demonstrates the applicability of unmanned aerial vehicle (UAV) photogrammetric data to land surface deformation monitoring in areas affected by underground mining. The results presented include data from two objects located in the Upper Silesian Coal Basin in Poland. The limits of coordinate and displacement accuracy are determined by comparing UAV-derived photogrammetric products to reference data. Vertical displacements are determined based on differences between digital surface models created using UAV imagery from several measurement series. Interpretation problems related to vegetation growth on the terrain surface that significantly affect vertical displacement error are pointed out. Horizontal displacements are determined based on points of observation lines established in the field for monitoring purposes, as well as based on scattered situational details. The use of this type of processing is limited by the need for unambiguous situational details with clear contours. Such details are easy to find in urbanized areas but difficult to find in fields and meadows. In addition, various types of discontinuous deformations are detected and their development over time is presented. The results are compared to forecasted land deformations. As a result of the data processing, it has been estimated that the accuracy of the determination of XY coordinates and the horizontal displacements (RMS) in best case scenario is on the level of 1.5–2 GSD, and about 2–3 GSD for heights and subsidence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    7
    Citations
    NaN
    KQI
    []