A Role for Both V1a and V2 Receptors in Renal Heat Stress Injury Amplified by Rehydration with Fructose
2019
Chronic vasopressin secretion induced by recurrent mild heat stress exposure is significantly enhanced by limited rehydration with a fructose-containing beverage both in rodents and in humans. Moreover, this effect has been associated with upregulation of the polyol–fructokinase pathway and increased renal oxidative stress. Previously, we have shown that pharmacological inhibition of both V1a and V2 vasopressin receptors with conivaptan improved such renal alterations. The aim of this study was to evaluate the independent contributions of V1a and V2 receptors to the renal damage caused by mild heat stress and limited rehydration with a fructose-containing beverage. Osmotic minipumps were used to deliver either relcovaptan (0.64 mg/day) or tolvaptan (0.25 mg/day) in male Wistar rats for two weeks. Corresponding dilution vehicles were used as controls. To induce dehydration, rats were exposed to mild heat stress (37 °C for 1 h, Monday to Friday). All groups received a 10% fructose solution as a rehydration fluid for 2 h after mild heat stress. For the remainder of the day and on weekends, rats received tap water. The independent blockade of either the V1a or the V2 receptor prevented renal damage, reduced oxidative stress, and decreased plasma cortisol and systemic inflammation. However, the beneficial effects were regulated by different mechanisms. Tolvaptan inhibited polyol–fructokinase pathway overactivation, while relcovaptan prevented upregulation of the renin–angiotensin system and SGK1 expression. These data suggest that both V1a and V2 receptors participate in renal damage caused by heat stress-induced dehydration when fructose-containing beverages are used as rehydration fluids.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
4
Citations
NaN
KQI