Computational Modelling of the Vibrational Characteristics of Zero-Dimensional Nanoscopic Structures

2019 
Insight into the vibrational characteristics of zero-dimensional nanoscopic structures is of fundamental interest, since it can be used to predict their geometrical and material properties. Zero-dimensional nanoscopic structures are nano-sized particles with all their three dimensions restricted to a few tens of nanometers. Investigation of these nanoscopic structures has prompted a growing research endeavour in diverse fields including nanolubrication, nanomanufacturing, nanocoatings and nanocomposites (Guo, Xie and Luo, J. Phys. D: Appl. Phys. 47, 013001 (2014)). In this chapter, we consider the nonlocal vibration analysis of zero-dimensional nanoscopic structures. An overview of the current literature discussing the vibration characteristics of zero-dimensional nanoscopic structures is presented first. We then discuss the application of the nonlocal models to the investigation of the vibration properties of the spherical fullerene molecules and nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []