Examination of Winter Circulation in a Northern Gulf of Mexico Estuary

2016 
Numerical model experiments were conducted to examine how estuarine circulation and salinity distribution in the Calcasieu Lake Estuary (CLE) of southwest Louisiana respond to the passage of cold fronts. River runoff, local wind stress, and tides from December 20, 2011, to February 1, 2012, were included as input. The experiments showed an anticyclonic circulation in the eastern CLE, a cyclonic circulation in West Cove, and a saltwater conduit in the navigation channel between these circulation cells. Freshwater from the river and wetlands tends to flow over the shallow shoals toward the ocean, presenting a case of the conventional estuarine circulation with shallow water influenced by river discharge and with weak tidally-induced motion, enhanced by wind. The baroclinic pressure gradient is important for the circulation and saltwater intrusion. The effect of remote wind-driven oscillation plays an important role in circulation and salinity distribution in winter. Unless it is from the east, wind is found to inhibit saltwater intrusion through the narrow navigation channel, indicating the effect of Ekman setup during easterly wind. A series of north-south oriented barrier islands in the lake uniquely influenced water level and salinity distribution between the shallow lake and deep navigation channel. The depth of the navigation channel is also crucial in influencing saltwater intrusion: the deeper the channel, the more saltwater intrusion and the more intense estuarine circulation. Recurring winter storms have a significant accumulated effect on the transport of water and sediment, saltwater intrusion, and associated environmental and ecosystem effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    15
    Citations
    NaN
    KQI
    []