Application of an optimized annotation pipeline to the Cryptococcus deuterogattii genome reveals dynamic primary metabolic gene clusters and genomic impact of RNAi loss

2020 
Evaluating the quality of a de novo annotation of a complex fungal genome based on RNA-seq data remains a challenge. In this study, we sequentially optimized a Cufflinks-CodingQuary based bioinformatics pipeline fed with RNA-seq data using the manually annotated model pathogenic yeasts Cryptococcus neoformans and Cryptococcus deuterogattii as test cases. Our results demonstrate that the quality of the annotation is sensitive to the quantity of RNA-seq data used and that the best quality is obtained with 5 to 10 million reads per RNA-seq replicate. We also demonstrated that the number of introns predicted is an excellent a priori indicator of the quality of the final de novo annotation. We then used this pipeline to annotate the genome of the RNAi-deficient species Cryptococcus deuterogattii strain R265 using RNA-seq data. Dynamic transcriptome analysis revealed that intron retention is more prominent in C. deuterogattii than in the other RNAi-proficient species C. neoformans and C. deneoformans. In contrast, the average level of antisense transcription was not higher in C. deuterogattii. Comparative gene content analysis identified 21 clusters enriched in transcription factors and transporters that have been lost. Interestingly, analysis of the subtelomeric regions in these three annotated species identified a similar gene enrichment, reminiscent of the structure of primary metabolic clusters. Our data suggest that there is active exchange between subtelomeric regions, and that other chromosomal regions might participate in adaptive diversification of Cryptococcus metabolite assimilation potential.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    3
    Citations
    NaN
    KQI
    []