Directed evolution of an enantioselective Bacillus subtilis lipase

2003 
Chiral compounds are of steadily increasing importance to the chemical industry, in particular for the production of pharmaceuticals. Where do these compounds come from? Apart from natural resources, two synthetic strategies are available: asymmetric chemical catalysis using transition metal catalysts and biocatalysis using enzymes. In the latter case, screening programs have identified a number of enzymes. However, their enantioselectivity is often not high enough for a desired reaction. This problem can be solved by applying directed evolution to create enantioselective enzymes as shown here for a lipase from Bacillus subtilis. The reaction studied was the asymmetric hydrolysis of meso-1,4-diacetoxy-2-cyclopentene with the formation of chiral alcohols which were detected by electrospray ionization mass spectrometry. Iterative cycles of random mutagenesis and screening allowed the identification of several variants with improved enantioselectivities. In parallel, we have started to use X-ray structural d...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    56
    Citations
    NaN
    KQI
    []