Assessment of Elevation Uncertainty in Salt Marsh Environments using Discrete-Return and Full-Waveform Lidar

2016 
ABSTRACT Rogers, J.N.; Parrish, C.E.; Ward, L.G., and Burdick, D.M., 2016. Assessment of elevation uncertainty in salt marsh environments using discrete-return and full-waveform lidar. In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 107–122. Coconut Creek (Florida), ISSN 0749-0208. Lidar data can serve as an important source of elevation information for studying, monitoring and managing salt marshes. However, previous studies have shown that lidar data tend to have greater vertical uncertainty in salt marshes than in other environments, hindering the ability to resolve small elevation differences that can be ecologically significant in marshes. For coastal scientists and managers to effectively collect, evaluate, and/or use lidar data in salt marshes, factors affecting elevation uncertainty (e.g., plant species, season, and lidar processing methods) mus...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    15
    Citations
    NaN
    KQI
    []