Preparation of polymer/silica/polymer tri-layer hybrid materials and the corresponding hollow polymer microspheres with movable cores

2009 
Abstract Tri-layer poly(methacrylic acid- co -ethyleneglycol dimethacrylate)/silica/poly(ethyleneglycol dimethacrylate) (P(MAA- co -EGDMA)/SiO 2 /PEGDMA) and P(MAA- co -EGDMA)/SiO 2 /polydivinylbenzene hybrid microspheres were prepared by distillation precipitation polymerization of ethyleneglycol dimethacrylate (EGDMA) and divinylbenzene (DVB) in the presence of 3-(methacryloxy)propyl trimethoxysilane (MPS)-modified P(MAA- co -EGDMA)/SiO 2 microspheres as the seeds. The polymerization of EGDMA and DVB was performed in neat acetonitrile with 2,2′-azobisisobutyronitrile (AIBN) as initiator to coat the MPS-modified P(MAA- co -EGDMA)/SiO 2 seeds through the capture of EGDMA and DVB oligomer radicals with the aid of vinyl groups on the surface of modified seeds in the absence of any stabilizer or surfactant. Monodisperse P(MAA- co -EGDMA)/SiO 2 core–shell microspheres were synthesized by coating of a layer of silica onto P(MAA- co -EGDMA) microspheres via a sol–gel process, which were further grafted by MPS incorporating the reactive vinyl groups onto the surface to be used as the seeds for the construction of hybrid microspheres with tri-layer structure. Hollow poly(ethyleneglycol dimethacrylate) (PEGDMA) and poly(divinylbenzene) (PDVB) microspheres with movable P(MAA- co -EGDMA) core were subsequently developed after the selective etching of the silica mid-layer from the tri-layer hybrid microspheres in hydrofluoric acid. The morphology and structure of the tri-layer polymer hybrids and the corresponding hollow polymer microspheres with movable P(MAA- co -EGDMA) core were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectra and X-ray photoelectron spectroscopy (XPS).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    34
    Citations
    NaN
    KQI
    []