Evaluation Method and Mitigation Strategies for Shrinkage Cracking of Modern Concrete

2021 
Abstract The complex compositions and large shrinkage of concrete, as well as the strong constraints of the structures, often lead to prominent shrinkage cracking problems in modern concrete structures. This paper first introduces a multi-field (hydro–thermo–hygro–constraint) coupling model with the hydration degree of cementitious materials as the basic state parameter to estimate the shrinkage cracking risk of hardening concrete under coupling effects. Second, three new key technologies are illustrated: temperature rise inhibition, full-stage shrinkage compensation, and shrinkage-reducing technologies. These technologies can efficiently reduce the thermal, autogenous, and drying shrinkages of concrete. Thereafter, a design process based on the theoretical model and key technologies is proposed to control the cracking risk index below the threshold value. Finally, two engineering application examples are provided that demonstrate that concrete shrinkage cracking can be significantly mitigated by adopting the proposed methods and technologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    7
    Citations
    NaN
    KQI
    []