Glass structure, phase transformation and microwave dielectric properties of CaO-B2O3-SiO2 glass-ceramics with addition of La2O3

2017 
The CaO–B2O3–SiO2 (CBS) glasses with addition of xLa2O3 (0 ≤ x ≤ 20 wt%) were prepared by conventional quenching method, the glass structure, phase transformation and microware dielectric properties were studied. The glass structure analysis by magic angle spinning nuclear magnetic resonance (MAS-NMR) and infrared (IR) spectroscopy indicated that [BO4] transformed into [BO3] and the proportion of Si–O–Si bridge oxygen bond in [SiO4] tetrahedrons decreased obviously with the addition of La2O3. The differential thermal analysis (DTA) revealed that the CBS glass system kept better glass-forming ability and the transition temperature (T g) decreased from 743 to 724 °C after addition of La2O3. As the content of La2O3 increases, the crystallization tendency of CaB2O4 is suppressed, while that for Ca2SiO4 is promoted. With appropriate content of La2O3 (5 wt%), the sample possess excellent dielectric properties (e r ≈ 4.1, tanδ ≈ 1.7 × 10−3 at 15 GHz). The variations of dielectric properties are believed to be appreciably associated with the relative content of the phases present.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    11
    Citations
    NaN
    KQI
    []