Vorinostat (SAHA) May Exert Its Antidepressant-Like Effects Through the Modulation of Oxidative Stress Pathways.

2021 
Suberoylanilide hydroxamic acid (SAHA/Vorinostat), a potent inhibitor of histone deacetylases (HDACs), is known to possess antidepressant properties. However, the exact mechanisms underlying this activity are unknown. In this study, we evaluated the effect of SAHA on the expression of GluN2A, GluN2B (NMDA receptor subunits), (p-)AMPK, and ΔFos proteins which are an integral part of the signal transduction pathways in the brain and also involved in the pathophysiology of depression as well as the mechanism of antidepressant action. We also measured the concentration of malondialdehyde (MDA - a product of lipid peroxidation). The study was carried out in the prefrontal cortex (PFC) and hippocampus (Hp), brain regions implicated in depression. Although SAHA induced changes in the expression of all the proteins and MDA concentration, the effects differed depending on the drug dose, time, and brain structure involved. SAHA reduced MDA concentration and significantly increased p-AMPK protein expression, indicating it may prevent oxidative stress. SAHA also increased the levels of HDAC3 and NMDA subunits (GluN2A and GluN2B), implying it is neuroprotective and may play a crucial role in synaptic plasticity. Moreover, ΔFosB and FosB levels were significantly elevated, suggesting that SAHA may modulate learning and memory processes. Overall, the data indicate that the Hp might play a pivotal role in the mechanism of action of SAHA, hinting at novel mechanisms it play in the antidepressant and neuroprotective effects of SAHA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []