Effects of fluoroethylene carbonate-induced solid-electrolyte-interface layers on carbon-based anode materials for potassium ion batteries

2021 
Abstract Potassium ion batteries (PIBs) are characterized by poor cycling stabilities and insufficient Coulombic efficiencies (CEs) due to the employment of conventional carbonate-based electrolyte systems that are normally used in lithium ion batteries. In this study, we investigated the effects of fluoroethylene carbonate (FEC)-induced solid-electrolyte-interface (SEI) layers on carbon-based anode materials for PIBs and achieved a remarkable enhancement of cycling performance by adding a small amount of FEC (0.2 wt.%) in a carbonate-based electrolyte system. The 0.2 wt.% FEC additive induced the formation of well-balanced organic-inorganic hybrid SEI layers, which effectively blocked additional electrolyte decomposition in consecutive discharge/charge cycles, causing a significant enhancement of CE and capacity retention. In addition, the FEC additive reduced the self-discharge rate from 2.2 to 1.5 mV h-1, demonstrating its beneficial effect on cycling stabilities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []