Design of a Small-Molecule Drug Conjugate for Prostate Cancer Targeted Theranostics

2016 
Targeted therapy has become an effective strategy of precision medicine for cancer treatment. Based on the success of antibody-drug conjugates (ADCs), here we report a theranostic design of small-molecule drug conjugates (T-SMDCs) for targeted imaging and chemotherapy of prostate cancer. The structure of T-SMDCs built upon a polyethylene glycol (PEG) scaffold consists of (i) a chelating moiety for positron emission tomography (PET) imaging when labeled with 68Ga, a positron-emitting radioisotope; (ii) a prostate specific membrane antigen (PSMA) specific ligand for prostate cancer targeting; and (iii) a cytotoxic drug (DM1) for chemotherapy. For proof-of-concept, such a T-SMDC, NO3A-DM1-Lys-Urea-Glu, was synthesized and evaluated. The chemical modification of Lys-Urea-Glu for the construction of the conjugate did not compromise its specific binding affinity to PSMA. The PSMA-mediated internalization of 68Ga-labeled NO3A-DM1-Lys-Urea-Glu displayed a time-dependent manner, allowing the desired drug delivery ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    29
    Citations
    NaN
    KQI
    []