Shock‐tube and modeling study of chloroethane pyrolysis and oxidation
2008
The high-temperature pyrolysis and oxidation of chloroethane were studied behind reflected shock waves using single-pulse, time-resolved IR absorption (3.39 μm), time-resolved UV absorption (306.7 nm), and time-resolved IR emission (4.24 μm) methods. The studies were performed over the temperature range 900–1650 K at total pressures between 0.8 and 3.2 atm. From a computer simulation study, a 201-reaction mechanism that could explain all of our data was constructed. The reactions at high temperatures were discussed in detail. It was found that, in the chloroethane pyrolysis and oxidation under our experimental conditions, reactions (1)–(7) and (9) and the submechanism of ethylene were important to predict our data.
© 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 320–339, 2008
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
10
Citations
NaN
KQI