Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis

2019 
We developed a label-free microfluidic acoustic flow cytometer (AFC) based on interleaved detection of ultrasound backscatter and photoacoustic waves from individual cells and particles flowing through a microfluidic channel. The AFC uses ultra-high frequency ultrasound, which has a center frequency of 375 MHz, corresponding to a wavelength of 4 μm, and a nanosecondpulsed laser, to detect individual cells. We validate the AFC by using it to count different color polystyrene microparticles and comparing the results to data from fluorescence-activated cell sorting (FACS). We also identify and count red and white blood cells in a blood sample using the AFC, and observe an excellent agreement with results obtained from FACS. This new label-free, non-destructive technique enables rapid and multi-parametric studies of individual cells of a large heterogeneous population using parameters such as ultrasound backscatter, optical absorption, and physical properties, for cell counting and sizing in biomedical and diagnostics applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    18
    Citations
    NaN
    KQI
    []