Enhanced gas sensing properties for formaldehyde based on ZnO/Zn2SnO4 composites from one-step hydrothermal synthesis
2021
Abstract Formaldehyde gas sensor with high performance is indispensable for monitoring indoor air quality. Exploring novel nanostructured composites as gas sensing materials is considered to be a feasible way to enhance the sensing performance. In this work, one-step hydrothermal method was employed for facile synthesis of ZnO/Zn2SnO4 nanocomposites and the as-prepared sample took on a homogeneous hexagonal lamellar nanostructure with a diameter of 600 nm–900 nm and thickness of about 100 nm. Gas sensing properties of the sample were tested and the results demonstrated that the ZnO/Zn2SnO4 composites possessed excellent sensing performances to formaldehyde. At 160 °C, the ZnO/Zn2SnO4 composites based sensor exhibited a high response of 22.5 towards 100 ppm of formaldehyde and a detection limit as low as 500 ppb. Compared with pristine Zn2SnO4 and ZnO, ZnO/Zn2SnO4 composites showed higher sensitivity (increased by 80% and 120%), better selectivity and lower detection limit. The noteworthy improvement of formaldehyde sensing performances could be attributed to the synergetic effect as well as the formation of n-n type heterojunctions between Zn2SnO4 and ZnO. The mechanism involved in gas sensing performance of ZnO/Zn2SnO4 composites was also discussed.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
44
References
16
Citations
NaN
KQI