Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning

2020 
Abstract. Air pollution, in particular high concentrations of particulate matter smaller than 1 µm in diameter (PM1), continues to be a major health problem, and meteorology is known to substantially contribute to atmospheric PM concentrations. However, the scientific understanding of the complex mechanisms leading to high pollution episodes is inconclusive, as the effects of meteorological variables are not easy to separate and quantify. In this study, a novel, data-driven approach based on empirical relationships is used to characterise the role of meteorology on atmospheric concentrations of PM1. A tree-based machine learning model is set up to reproduce concentrations of speciated PM1 at a suburban site southwest of Paris, France, using meteorological variables as input features. The contributions of each meteorological feature to modeled PM1 concentrations are quantified using SHapley Additive exPlanation (SHAP) regression values. Meteorological contributions to PM1 concentrations are analysed in selected high-resolution case studies, contrasting season-specific processes. Model results suggest that winter pollution episodes are often driven by a combination of shallow mixed layer heights (MLH), low temperatures, low wind speeds or inflow from northeastern wind directions. Contributions of MLHs to the winter pollution episodes are quantified to be on average ~ 5 µg/m³ for MLHs below 500 m agl. Temperatures below freezing initiate formation processes and increase local emissions related to residential heating, amounting to a contribution of as much as ~ 9 µg/m³. Northeasterly winds are found to contribute ~ 5 µg/m³ to total PM1 concentrations (combined effects of u- and v-wind components), by advecting particles from source regions, e.g. central Europe or the Paris region. However, in calm conditions (i.e. wind speeds
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    7
    Citations
    NaN
    KQI
    []