The Chemical Basis of Serine Palmitoyltransferase Inhibition by Myriocin.

2013 
Sphingolipids (SLs) are essential components of cellular membranes formed from the condensation of l-serine and a long-chain acyl thioester. This first step is catalyzed by the pyridoxal-5′-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) which is a promising therapeutic target. The fungal natural product myriocin is a potent inhibitor of SPT and is widely used to block SL biosynthesis despite a lack of a detailed understanding of its molecular mechanism. By combining spectroscopy, mass spectrometry, X-ray crystallography, and kinetics, we have characterized the molecular details of SPT inhibition by myriocin. Myriocin initially forms an external aldimine with PLP at the active site, and a structure of the resulting co-complex explains its nanomolar affinity for the enzyme. This co-complex then catalytically degrades via an unexpected ‘retro-aldol-like’ cleavage mechanism to a C18 aldehyde which in turn acts as a suicide inhibitor of SPT by covalent modification of the essential catalyti...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    69
    Citations
    NaN
    KQI
    []