Silicon nanofabrication and chemical modification by UHV-STM

1995 
Patterning on the 10 A size scale has been achieved with a UHV-STM for Si(100)-2×1:H surfaces. Hydrogen passivation serves as a monolayer resist which the STM locally desorbs, exposing clean Si(100)-2×1 for selective chemistry. Two mechanisms have been identified for hydrogen removal by STM electrons: in the field emission regime direct electron stimulated desorption of hydrogen occurs whereas, in the lower energy tunneling regime, hydrogen desorption results from vibrational excitation of the Si-H bond at high tunneling currents. Furthermore, we find that atomic hydrogen is liberated in contrast to molecular hydrogen evolved during thermal desorption. Selective oxidation and nitridation of the STM-patterned areas has been achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    12
    Citations
    NaN
    KQI
    []