Preoperative trajectory planning for closed reduction of long-bone diaphyseal fracture using a computer-assisted reduction system

2015 
Background Balancing reduction accuracy with soft-tissue preservation is a challenge in orthopaedics. Computer-assisted orthopaedic surgery (CAOS) can improve accuracy and reduce radiation exposure. However, previous reports have not summarized the fracture patterns to which CAOS has been applied. Methods We used a CAOS system and a stereolithography model to define a new fracture classification. Twenty reduction tests were performed to evaluate the effectiveness of preoperative trajectory planning. Results Twenty tests ran automatically and smoothly. Only three slight scratches occurred. Seventy-six path points represented displacement deviations of < 2 mm (average < 1 mm) and angulation deviation of < 1.5°. Discussion Because of the strength of muscles, mechanical sensors are used to prevent iatrogenic soft-tissue injury. Secondary fractures are prevented mainly through preoperative trajectory planning. Based on our data, a 1 mm gap between the edges of fractures spikes is sufficient to avoid emergency braking from spike interference. Copyright © 2014 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    14
    Citations
    NaN
    KQI
    []