Decoding the Ice-Water Energy Paradox in the DW-MRI Phantom for Tumors: Targeting Thermodynamics, Kinetic and Structural Molecular Mechanisms Commentary

2014 
Diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) are diagnostic tools widely used to detect solid tumors and monitor therapy response. The ice-water calibration phantom has led to more accurate and reproducible DWI and ADC diagnostics by reducing intra- and inter-vendor dispersion, independent of field intensity (1.5 - 3 Tesla). The ice-water calibration phantom method is based on the idea of thermal equilibrium. The discovery of exclusion zone (EZ) may deeply change such understanding. This paper highlights how thermodynamic, structural and kinetic results of the EZ paradigm may help to explain the ice-water energy paradox and cement our understanding of the ice-water phantom and its application in the diagnosis of solid tumors and other complex diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    1
    Citations
    NaN
    KQI
    []