Effects of non-flat contact and interference on self-assembled monolayers under sliding friction

2011 
Abstract The nanotribology mechanism of alkanethiol self-assembled monolayers (SAM) chemisorbed on a gold surface under a non-flat contact by a tilt plane was studied using molecular dynamics (MD) simulations. The molecular trajectories, tilt angles, normal forces, shear forces, and frictional coefficient of the SAM were evaluated during the friction and relaxation processes for various parameters, including the tilt angle of the slider, interference magnitude, and SAM length. At the nanoscale, the magnitude of interface interactional forces is strongly dependent on the magnitude of the contact area, not on the surface geometry. The contact area and the exerted normal force of the SAM increase with decreasing the tilt angle of the slider at the same contact interference. In contrast, the periods in both normal force and shear force are gradually delayed as the tilt angle of the slider increases. Once the contact interference increases, the normal force and shear force increase together. During the sliding friction process with a smaller tilt slider angle, SAM molecules can maintain a better collective ordered structure. Short SAM molecules are more sensitive to a compressive loading and react to a larger normal force under the same contact interference due to the deformation of a larger tilt angle and decrease in chain length. The friction coefficient of SAM is significantly more dependent on the tilt angle of the slider than the contact interference.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    5
    Citations
    NaN
    KQI
    []