Size- and sex-specific predation on dung flies by amphibian and arthropod predators – size match matters

2019 
Because predator-prey interactions in nature are multifarious, linking phenomenological predation rates to the underlying behavioural or ecological mechanisms is challenging. Size- and sex-specific predation has been implicated as a major selective force keeping animals small, affecting the evolution of body size and sexual size dimorphism. We experimentally assessed predation by various amphibian (frogs and toads) and arthropod predators (bugs, flies, spiders) on three species of dung flies with similar ecology but contrasting body sizes, sexual size dimorphism and coloration. Predators were offered a size range of flies in single- or mixed-sex groups. As expected based on optimal foraging theory, some anurans (e.g. Bufo bufo ) selected larger prey, thus selecting against large body size of the flies, while others ( Bombina variagata and Rana esculenta ) showed no such pattern. Small juvenile Rana temporaria metamorphs, in contrast, preferred small flies, as did all arthropod predators, a pattern that can be explained by larger prey being better at escaping. The more mobile males were not eaten more frequently or faster than the cryptic females, even when conspicuously colored. Predation rates on flies in mixed groups permitting mating activity were not higher, contrary to expectation, nor was predation generally sex-specific. We conclude that the size-selectivity of predators, and hence the viability selection pattern exerted on their prey, depends foremost on the relative body sizes of the two in a continuous fashion. Sex-specific predation by single predators appears to contribute little to sexual dimorphism. Therefore, the mechanistic study of predation requires integration of both the predator’s and the prey’s perspectives, and phenomenological field studies of predation remain indispensable.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    0
    Citations
    NaN
    KQI
    []