Influence of P3HT concentration on morphological, optical and electrical properties of P3HT/PS and P3HT/PMMA binary blends

2011 
Abstract Poly(3-hexylthiophene) (P3HT) has interesting optoelectronic properties and a wide variety of applications such as solar cells and O-FET devices. It is a soluble conductive polymer but their mechanical properties are poor and its conductivity is unstable in environmental condition. With the finality of overcome these disadvantages, P3HT binary blends with two insulating polymers, polystyrene (PS) and polymethylmetacrilate (PMMA), have been synthesized by direct oxidation of 3-hexylthiophene with FeCl 3 as oxidant inside the insulator polymers. Molecular weight and polydispersity of P3HT polymer were measured by size exclusion chromatography and the degree of regioregularity by 1 H RMN. P3HT/PS and P3HT/PMMA thin films were prepared by spin-coating technique from toluene solution at different P3HT concentrations. The doped films were obtained by immersion during 30 s in a 0.3 M ferric chloride (FeCl 3 ) solution in nitromethane. A classical percolation phenomenon was observed in the electrical properties of the binary blends, it was smaller than 4 wt.% of P3HT in the blend. Atomic force microscopy and confocal microscopy showed a phase-separated morphology. Variation in the surface morphology of the blends was observed, which was a function of the polymer concentration and the type of insulator polymer used in the blends. The insulator polymer was segregated on the surface of the films and showed pit and island-like topography. The pit and island size changed as a function of the polymer concentration. Optical absorption properties as a function of the P3HT concentration in the undoped and doped state were analyzed. In doped state, the bipolaron bands in the PS/P3HT and PMMA/P3HT blends were observed from a P3HT concentration of 1 wt.% and 3 wt.%, respectively. Finally, the polymers were analyzed by thermogravimetric analysis and infrared spectroscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    31
    Citations
    NaN
    KQI
    []