Observation of scaling in the dynamics of a strongly quenched quantum gas

2015 
We report on the experimental observation of scaling in the time evolution following a sudden quench into the vicinity of a quantum critical point. The experimental system, a two-component Bose gas with coherent exchange between the constituents, allows for the necessary high level of control of parameters as well as the access to time-resolved spatial correlation functions. The theoretical analysis reveals that when quenching the system close to the critical point, the energy introduced by the quench leads to a short-time evolution exhibiting crossover reminiscent of the finite-temperature critical properties in the system's universality class. Observing the time evolution after a quench represents a paradigm shift in accessing and probing experimentally universal properties close to a quantum critical point and allows in a new way benchmarking of quantum many-body theory with experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    88
    Citations
    NaN
    KQI
    []