Short- and long-term skin graft survival in cattle clones with different mitochondrial haplotypes

2006 
Abstract In contrast to nuclear DNA, cytoplasmic genes may differ among cloned animals due to the presence of polymorphic mitochondrial DNA haplotypes in the host oocytes, raising doubts about histocompatibility among clones. Three bovine clones were generated by nuclear transfer; dermal fibroblasts from a fetus were used as donor cells, whereas oocytes from abbatoir-derived ovaries were used as recipient cells. The mitochondrial DNA (sequencing of coding and non-coding regions) and nuclear DNA (13 microsatellite markers) of cloned and control animals were characterized to identify potential polymorphisms. Skin auto- and allografts were transplanted on the adult clones and a non-related animal as a measure of immunological reactivity. Nuclear DNA of cloned animals was genetically identical but differed in all microsatellites of the non-related control. Amounts of donor cell mitochondrial DNA in the skin ranged from 1 to 2.6% among clones. Few differences in heteroplasmy were observed between skin and WBC of the clones, indicating limited mitochondrial DNA segregation in tissues during pre- and post-natal development to adulthood. Sequencing of the remaining oocyte-derived mitochondrial DNA haplotype identified polymorphisms in coding and non-coding regions, confirming their origin from unrelated maternal lineages. Nonetheless, skin transplants between clones were accepted for the 92 d study period, whereas third-party grafts were rejected. In conclusion, the nuclear transfer-generated adult bovine clones used in this study were immunologically compatible with one another despite differences in their mitochondrial DNA haplotypes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    13
    Citations
    NaN
    KQI
    []