Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90 nm Localized Charge-Trapping Non-volatile Memory

2010 
As the scaling-down of non-volatile memory (NVM) cells continues, the impact of shallow trench isolation (STI) on NVM cells becomes more severe. It has been observed in the 90 nm localized charge-trapping non-volatile memory (NROM™) that the programming efficiency of edge cells adjacent to STI is remarkably lower than that of other cells when channel hot electron injection is applied. Boron segregation is found to be mainly responsible for the low programming efficiency of edge cells. Meanwhile, an additional boron implantation of 10° tilt at the active area edge as a new solution to solve this problem is developed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    1
    Citations
    NaN
    KQI
    []