Biocompatibility and Immunocompatibility Assessment of Poly(2-Oxazolines)

2013 
Synthetic polymers are considered to be the promising materials for biomedical applications. Various polymer formulations have been employed to achieve the desired chemical, physical and biological properties. Recently, there has been much interest in the development of environmentally responsive polymers for use as biomaterials [1]. Such behavior is significant for the controlled release of drugs upon the application of a stimulus, such as pH, temperature, light or ionic strength. These mentioned properties are necessary for the utilization of polymeric materials for biomedical applications, such as drug and gene delivery, biomembrane technology and biocatalysis [2,3]. Polymer materials can be used in medicine as a part of implant, dialysis membranes, bone scaffolds or components of artificial organs. It means that polymers covers very broad range of biomedical applications. A critical point of the usage of synthetic polymers in living bodies is their utilization, accompanied with the interactions of the foreign material, with the living matter (cells, tissues etc.). The implantation of polymeric materials to a body is usually associated with the inflammation and biofouling. The inflammation is the first defense mechanism of the immune system followed by unspecific cell and protein adhesion and the formation of fibrotic tissue which leads to implant s dysfunctions. The fundamental role in the implantation of these materials is to increase the tolerance of body to implanted material and to avoid the foreign body reaction [4,5].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    1
    Citations
    NaN
    KQI
    []