Comparative Study of Corrosion Properties of Different Graphene Nanoplate/Epoxy Composite Coatings for Enhanced Surface Barrier Protection

2021 
Loading of graphene to polymeric materials has proven a widespread increase in the corrosion properties of nanocomposites. In this study, graphene nanoplatelets (Gnps)/epoxy composite coatings were prepared by incorporating three commercial graphene nanoparticles (C750, M15, and X50 Gnps) into epoxy resin. The morphological impact of the Gnps on the surface barrier protection were evaluated in terms of coating’s adhesion to the substate, hydrophobicity and water uptake performance. Salt spray resistance and Electrochemical Impedance Spectroscopy (EIS) authenticated that the coating integrated with C750 Gnp remarkably improved the anti-corrosion performance of neat epoxy composite coatings. A robust passive layer and surface barrier characteristics formed by the composite coatings incorporated with C750 nanoparticle should be the main reason for better protection properties offered by C750 Gnp/epoxy nanocomposites. At the same time, homogeneous dispersion and lesser agglomerates in C750 Gnp/epoxy composite coatings mainly contributed to the coating’s excessive corrosion resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []