zFourGE/CANDELS : on the evolution of M* galaxy progenitors from z=3 to 0.5
2015
Galaxies with stellar masses near M ∗ contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present day stellar masses near M ∗ , at 5× 10 10 M⊙ (defined here to be MW-mass) and 10 11 M⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using ZFOURGE, a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galax ies out to z ∼ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far- IR luminosities, and star-formation rates combining our deep multiwavelength imaging with near-IR HST imaging from CANDELS, and Spitzer and Herschel far-IR imaging from GOODS-H and CANDELS-H. The typical MW-m ass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages, to redder dust-obscured IR-luminous galaxies in intermediate stages, and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of 2‐3 lo wer than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star-formation in present-day M ∗ galaxies requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and star-formation rates imply that the b aryonic cold‐gas fractions drop as galaxies evolve from high redshift to z ∼ 0 and are strongly anticorrelated with an increase in the Ser sic index. Therefore,
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
221
References
148
Citations
NaN
KQI