Zinc ions doped cesium lead bromide perovskite nanocrystals with enhanced efficiency and stability for white light-emitting diodes

2021 
Abstract All-inorganic cesium lead halide perovskite nanocrystals (NCs) are considered as an excellent candidate material for light-emitting devices (LED) displays because of their great photo-physical properties. However, the efficiency and stability of these materials are still unsatisfactory, which is the main disadvantage hindering the commercialization of the perovskite NCs based LED displays. On the other hand, the poisonous element lead (Pb) restricted the large-scale application of the perovskite NCs. Here we reported a hot-injection method by doping zinc ions into the CsPbBr3 NCs with enhanced photoluminescence (PL) properties and stability in ambient air. The doped NCs exhibit the highest photoluminescence quantum yield (PLQY) of 91.3% and a narrow full width at half-maximum (FWHM) of 15.5 nm. The improved the optical properties and stability of the doped NCs may result from the enhanced formation energies of perovskite lattices and the surface passivation. Finally, a white light-emitting diode (WLED) was fabricated by combining the green-emitting CsPbBr3:Zn2+ doped NCs and red-emitting K2SiF6:Mn6+ phosphors along with a blue LED chip, which exhibits a luminous efficiency of 36 lm/W, a chromaticity coordinate of (0.327, 0.336), a color temperature (CCT) of 5760 K and a wide color gamut (137% of the National Television System Committee).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []