Protons Activate Homomeric Kir6.2 Channels by Selective Suppression of the Long and Intermediate Closures

2002 
: The ATP-sensitive K+ channels (KATP) play an important role in regulating membrane excitability. These channels are regulated by H+ in addition to ATP, ADP, and phospholipids. To understand how protons affect the single-channel properties, Kir6.2DeltaC36 currents were studied in excised inside-out patches. We chose to study the homomeric Kir6.2 channel with 36 amino acids deleted at the C-terminal end, as there are ADP/ATP-binding sites in the SUR subunit, which may obscure the understanding of the channel-gating process. In the absence of ATP, moderate intracellular acidosis (pH 6.8) augmented P(open) with small suppression (by approximately 10%) of the single-channel conductance. The long and intermediate closures were selectively inhibited, leading to a shortening of the mean closed time without significant changes in the mean open time. Stronger acidification (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    15
    Citations
    NaN
    KQI
    []