Toward Compact Deep Neural Networks via Energy-Aware Pruning.

2021 
Despite of the remarkable performance, modern deep neural networks are inevitably accompanied with a significant amount of computational cost for learning and deployment, which may be incompatible with their usage on edge devices. Recent efforts to reduce these overheads involves pruning and decomposing the parameters of various layers without performance deterioration. Inspired by several decomposition studies, in this paper, we propose a novel energy-aware pruning method that quantifies the importance of each filter in the network using nuclear-norm (NN). Proposed energy-aware pruning leads to state-of-the art performance for Top-1 accuracy, FLOPs, and parameter reduction across a wide range of scenarios with multiple network architectures on CIFAR-10 and ImageNet after fine-grained classification tasks. On toy experiment, despite of no fine-tuning, we can visually observe that NN not only has little change in decision boundaries across classes, but also clearly outperforms previous popular criteria. We achieve competitive results with 40.4/49.8% of FLOPs and 45.9/52.9% of parameter reduction with 94.13/94.61% in the Top-1 accuracy with ResNet-56/110 on CIFAR-10, respectively. In addition, our observations are consistent for a variety of different pruning setting in terms of data size as well as data quality which can be emphasized in the stability of the acceleration and compression with negligible accuracy loss. Our code is available at https://github.com/nota-github/nota-pruning_rank.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    1
    Citations
    NaN
    KQI
    []