Comparison of lipid profiles in head and brain samples of drosophila melanogaster using electrospray ionization mass spectrometry (ESI-MS)

2019 
Drosophila melanogaster (fruits fly) is a representative model system widely used in biological studies because its brain function and basic cellular processes are similar to human beings. The whole head of the fly is often used to obtain the key function in brain-related diseases like degenerative brain diseases; however the biomolecular distribution of the head may be slightly different from that of a brain. Herein, lipid profiles of the head and dissected brain samples of Drosophila were studied using electrospray ionization-mass spectrometry (ESI-MS). According to the sample types, the detection of phospholipid ions was suppressed by triacylglycerol (TAG), or the specific phospholipid signals that are absent in the mass spectrum were measured. The lipid distribution was found to be different in the wild-type and the microRNA-14 deficiency model (miR-14Δ1) with abnormal lipid metabolism. A few phospholipids were also profiled by comparison of the head and the brain in two fly model systems. The mass spectra showed that the phospholipid distributions in the miR-14Δ1 model and the wild-type were different, and principal component analysis revealed a correlation between some phospholipids (phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS)) in miR-14Δ1. The overall results suggested that brain-related lipids should be profiled using fly samples after dissection for more accurate analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []