Sodium butyrate reduce ammonia and hydrogen sulfide emissions by regulating bacterial community balance in swine cecal content in vitro.

2021 
Reducing the production of odor during swine breeding has attracted attention. Ammonia (NH3) and hydrogen sulfide (H2S) contributed to the odor emissions from swine breeding because NH3 emissions are high and hydrogen sulfide (H2S) has a low odor threshold. Sodium butyrate reduces the odor emissions caused by NH3 and H2S, but the corresponding mechanism is unclear. After mixing the feces of six fattening pigs, the mixture was used to process in vitro fermentation experiment. The purpose was researching the effect of sodium butyrate reduced NH3 and H2S emissions in swine cecal contents. The control group was denoted CK, and the treatment groups with different sodium butyrate concentrations (0.015%, 0.030% and 0.150%) were denoted L, M and H. The NH3, H2S, total gas production and physicochemical indexes were measured, and the bacterial communities in the fermented product were analyzed by 16 S rDNA sequencing. The results showed that group M reduced NH3, H2S and total gas production by 17.96%, 12.26% and 30.30%, respectively. Sodium butyrate promoted SO42- accumulation and lowered the pH. Importantly, sodium butyrate decreased the relative abundance of bacteria positively correlated with NH3 and H2S production, but increased the negatively correlated ones. Proteobacteria made a greater contribution to reducing emissions than did other bacterial phyla. Our results showed that adding 0.030% sodium butyrate can significantly reduce NH3 and H2S production, which occurred via alterations in the physicochemical indicators to adjust the abundance of the bacteria related to odor production, including Proteobacteria.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []