An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model

2020 
Abstract Robotic belt grinding of the leading and trailing edges of complex blades is considered to be a challenging task, since the microscopic material removal mechanism is complicated due to the flexible contact state accompanied with greatly varying curvature that finally affects the machined profile accuracy. The resulting poor accuracy of blade edges, to a great extent, is attributed to the trajectory planning method which less considers the dynamics. In this paper, an iso-scallop height algorithm based on the material removal profile (MRP) model is developed to plan the tool paths by taking into consideration the elastic deformation at contact wheel-workpiece interface. An improved constant chord-height error method considering the influence of elastic deformation is then proposed to adaptively plan the grinding points according to the curvature change characteristics of the free-form surface. Based on these two steps, a MRP model based adaptive trajectory planning algorithm is constructed to enhance the profile accuracy facing the robotic belt grinding operation. Simulation and experimental results demonstrate the effectiveness of the proposed trajectory planning algorithm for the robotic belt grinding of blades from the perspectives of surface roughness, profile accuracy and processing efficiency. Particularly this technology serves to solve the problem of over-cutting at the blade leading and trailing edges.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    14
    Citations
    NaN
    KQI
    []